Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 73, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451354

RESUMO

KEY MESSAGE: The NIAB_WW_SHW_NAM population, a large nested association mapping panel, is a useful resource for mapping QTL from synthetic hexaploid wheat that can improve modern elite wheat cultivars. The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource for addressing the genetic diversity bottleneck in modern cultivars. Synthetic hexaploid wheat (SHW) is created through resynthesis of the hybridisation events between the tetraploid (Triticum turgidum subsp. durum Desf.) and diploid (Aegilops tauschii Coss.) bread wheat progenitors. We developed a large and diverse winter wheat nested association mapping (NAM) population (termed the NIAB_WW_SHW_NAM) consisting of 3241 genotypes derived from 54 nested back-cross 1 (BC1) populations, each formed via back-crossing a different primary SHW into the UK winter wheat cultivar 'Robigus'. The primary SHW lines were created using 15 T. durum donors and 47 Ae. tauschii accessions that spanned the lineages and geographical range of the species. Primary SHW parents were typically earlier flowering, taller and showed better resistance to yellow rust infection (Yr) than 'Robigus'. The NIAB_WW_SHW_NAM population was genotyped using a single nucleotide polymorphism (SNP) array and 27 quantitative trait loci (QTLs) were detected for flowering time, plant height and Yr resistance. Across multiple field trials, a QTL for Yr resistance was found on chromosome 4D that corresponded to the Yr28 resistance gene previously reported in other SHW lines. These results demonstrate the value of the NIAB_WW_SHW_NAM population for genetic mapping and provide the first evidence of Yr28 working in current UK environments and genetic backgrounds. These examples, coupled with the evidence of commercial wheat breeders selecting promising genotypes, highlight the potential value of the NIAB_WW_SHW_NAM to variety improvement.


Assuntos
Poaceae , Triticum , Triticum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Genótipo
2.
Plant Genome ; 16(4): e20326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37057385

RESUMO

Improved selection of wheat varieties with high end-use quality contributes to sustainable food systems by ensuring productive crops are suitable for human consumption end-uses. Here, we investigated the genetic control and genomic prediction of milling and baking quality traits in a panel of 379 historic and elite, high-quality UK bread wheat (Triticum eastivum L.) varieties and breeding lines. Analysis of the panel showed that genetic diversity has not declined over recent decades of selective breeding while phenotypic analysis found a clear trend of increased loaf baking quality of modern milling wheats despite declining grain protein content. Genome-wide association analysis identified 24 quantitative trait loci (QTL) across all quality traits, many of which had pleiotropic effects. Changes in the frequency of positive alleles of QTL over recent decades reflected trends in trait variation and reveal where progress has historically been made for improved baking quality traits. It also demonstrates opportunities for marker-assisted selection for traits such as Hagberg falling number and specific weight that do not appear to have been improved by recent decades of phenotypic selection. We demonstrate that applying genomic prediction in a commercial wheat breeding program for expensive late-stage loaf baking quality traits outperforms phenotypic selection based on early-stage predictive quality traits. Finally, trait-assisted genomic prediction combining both phenotypic and genomic selection enabled slightly higher prediction accuracy, but genomic prediction alone was the most cost-effective selection strategy considering genotyping and phenotyping costs per sample.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Humanos , Triticum/genética , Genótipo , Pão , Melhoramento Vegetal , Genômica , Reino Unido
3.
New Phytol ; 237(5): 1558-1573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519272

RESUMO

The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/anatomia & histologia , Locos de Características Quantitativas/genética , Folhas de Planta/anatomia & histologia , Fenótipo , Células Epidérmicas
4.
Glob Chang Biol ; 29(5): 1296-1313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36482280

RESUMO

Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050-2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype-environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.


Assuntos
Mudança Climática , Triticum , Humanos , Triticum/genética , Melhoramento Vegetal , Aclimatação , Reino Unido
5.
Theor Appl Genet ; 135(2): 667-678, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34778903

RESUMO

KEY MESSAGE: Variety age and population structure detect novel QTL for yield and adaptation in wheat and barley without the need to phenotype. The process of crop breeding over the last century has delivered new varieties with increased genetic gains, resulting in higher crop performance and yield. However, in many cases, the alleles and genomic regions underpinning this success remain unknown. This is partly due to the difficulty of generating sufficient phenotypic data on large numbers of historical varieties to enable such analyses. Here we demonstrate the ability to circumvent such bottlenecks by identifying genomic regions selected over 100 years of crop breeding using age of a variety as a surrogate for yield. Rather than collecting phenotype data, we deployed 'environmental genome-wide association scans' (EnvGWAS) based on variety age in two of the world's most important crops, wheat and barley, and detected strong signals of selection across both genomes. EnvGWAS identified 16 genomic regions in barley and 10 in wheat with contrasting patterns between spring and winter types of the two crops. To further examine changes in genome structure, we used the genomic relationship matrix of the genotypic data to derive eigenvectors for analysis in EigenGWAS. This detected seven major chromosomal introgressions that contributed to adaptation in wheat. EigenGWAS and EnvGWAS based on variety age avoid costly phenotyping and facilitate the identification of genomic tracts that have been under selection during breeding. Our results demonstrate the potential of using historical cultivar collections coupled with genomic data to identify chromosomal regions under selection and may help guide future plant breeding strategies to maximise the rate of genetic gain and adaptation.


Assuntos
Hordeum , Triticum , Estudo de Associação Genômica Ampla , Hordeum/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/genética
6.
Genome Biol ; 22(1): 137, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957956

RESUMO

BACKGROUND: Selection has dramatically shaped genetic and phenotypic variation in bread wheat. We can assess the genomic basis of historical phenotypic changes, and the potential for future improvement, using experimental populations that attempt to undo selection through the randomizing effects of recombination. RESULTS: We bred the NIAB Diverse MAGIC multi-parent population comprising over 500 recombinant inbred lines, descended from sixteen historical UK bread wheat varieties released between 1935 and 2004. We sequence the founders' genes and promoters by capture, and the MAGIC population by low-coverage whole-genome sequencing. We impute 1.1 M high-quality SNPs that are over 99% concordant with array genotypes. Imputation accuracy only marginally improves when including the founders' genomes as a haplotype reference panel. Despite capturing 73% of global wheat genetic polymorphism, 83% of genes cluster into no more than three haplotypes. We phenotype 47 agronomic traits over 2 years and map 136 genome-wide significant associations, concentrated at 42 genetic loci with large and often pleiotropic effects. Around half of these overlap known quantitative trait loci. Most traits exhibit extensive polygenicity, as revealed by multi-locus shrinkage modelling. CONCLUSIONS: Our results are consistent with a gene pool of low haplotypic diversity, containing few novel loci of large effect. Most past, and projected future, phenotypic changes arising from existing variation involve fine-scale shuffling of a few haplotypes to recombine dozens of polygenic alleles of small effect. Moreover, extensive pleiotropy means selection on one trait will have unintended consequences, exemplified by the negative trade-off between yield and protein content, unless selection and recombination can break unfavorable trait-trait associations.


Assuntos
Variação Genética , Haplótipos/genética , Herança Multifatorial/genética , Melhoramento Vegetal , Triticum/genética , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Deleção de Genes , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
7.
BMC Plant Biol ; 21(1): 212, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975563

RESUMO

BACKGROUND: Anemia is thought to affect up to 1.6 billion people worldwide. One of the major contributors to low iron (Fe) absorption is a higher proportion of cereals compared to meats and pulse crops in people's diets. This has now become a problem in both the developed and developing world, as a result of both modern food choice and food availability. Bread wheat accounts for 20 % of the calories consumed by humans and is an important source of protein, vitamins and minerals meaning it could be a major vehicle for bringing more bioavailable Fe into the diet. RESULTS: To investigate whether breeding for higher concentrations of Fe in wheat grains could help increase Fe absorption, a multiparent advanced generation intercross (MAGIC) population, encompassing more than 80 % of UK wheat polymorphism, was grown over two seasons in the UK. The population was phenotyped for both Fe concentration and Fe bioavailability using an established Caco-2 cell bioassay. It was found that increasing Fe concentrations in the grains was not correlated with higher Fe bioavailability and that the underlying genetic regions controlling grain Fe concentrations do not co-localise with increased Fe absorption. Furthermore, we show that phytate concentrations do not correlate with Fe bioavailability in our wheat population and thus phytate-binding is insufficient to explain the lack of correlation between Fe bioavailability and Fe concentrations in the wheat grain. Finally, we observed no (Fe bioavailability) or low (Fe concentration) correlation between years for these traits, confirming that both are under strong environmental influence. CONCLUSIONS: This suggests that breeders will have to select not only for Fe concentrations directly in grains, but also increased bioavailability. However the use of numerous controls and replicated trials limits the practicality of adoption of screening by Caco-2 cells by many breeders.


Assuntos
Disponibilidade Biológica , Grão Comestível/química , Ferro da Dieta/análise , Ferro da Dieta/metabolismo , Triticum/química , Triticum/genética , Triticum/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Melhoramento Vegetal , Reino Unido
8.
Nature ; 588(7837): 277-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239791

RESUMO

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimento
9.
Heredity (Edinb) ; 125(6): 396-416, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32616877

RESUMO

Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.


Assuntos
Produtos Agrícolas , Genômica , Melhoramento Vegetal , Mapeamento Cromossômico , Produtos Agrícolas/genética , Genoma de Planta , Locos de Características Quantitativas
10.
PLoS Biol ; 17(2): e3000071, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30818353

RESUMO

Information on crop pedigrees can be used to help maximise genetic gain in crop breeding and allow efficient management of genetic resources. We present a pedigree resource of 2,657 wheat (Triticum aestivum L.) genotypes originating from 38 countries, representing more than a century of breeding and variety development. Visualisation of the pedigree enables illustration of the key developments in United Kingdom wheat breeding, highlights the wide genetic background of the UK wheat gene pool, and facilitates tracing the origin of beneficial alleles. A relatively high correlation between pedigree- and marker-based kinship coefficients was found, which validated the pedigree and enabled identification of errors in the pedigree or marker data. Using simulations with a combination of pedigree and genotype data, we found evidence for significant effects of selection by breeders. Within crosses, genotypes are often more closely related than expected by simulations to one of the parents, which indicates selection for favourable alleles during the breeding process. Selection across the pedigree was demonstrated on a subset of the pedigree in which 110 genotyped varieties released before the year 2000 were used to simulate the distribution of marker alleles of 45 genotyped varieties released after the year 2000, in the absence of selection. Allelic diversity in the 45 varieties was found to deviate significantly from the simulated distributions at a number of loci, indicating regions under selection over this period. The identification of one of these regions as coinciding with a strong yield component quantitative trait locus (QTL) highlights both the potential of the remaining loci as wheat breeding targets for further investigation, as well as the utility of this pedigree-based methodology to identify important breeding targets in other crops. Further evidence for selection was found as greater linkage disequilibrium (LD) for observed versus simulated genotypes within all chromosomes. This difference was greater at shorter genetic distances, indicating that breeder selections have conserved beneficial linkage blocks. Collectively, this work highlights the benefits of generating detailed pedigree resources for crop species. The wheat pedigree database developed here represents a valuable community resource and will be updated as new varieties are released at https://www.niab.com/pages/id/501/UK_Wheat_varieties_Pedigree.


Assuntos
Adaptação Fisiológica , Cruzamento , Triticum/fisiologia , Alelos , Cromossomos de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Genótipo , Desequilíbrio de Ligação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética
11.
Front Plant Sci ; 9: 881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022985

RESUMO

Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.

12.
Appl Transl Genom ; 11: 9-17, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28018845

RESUMO

Most agriculturally significant crop traits are quantitatively inherited which limits the ease and efficiency of trait dissection. Multi-parent populations overcome the limitations of traditional trait mapping and offer new potential to accurately define the genetic basis of complex crop traits. The increasing popularity and use of nested association mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations raises questions about the optimal design and allocation of resources in their creation. In this paper we review strategies for the creation of multi-parent populations and describe two complementary in silico studies addressing the design and construction of NAM and MAGIC populations. The first simulates the selection of diverse founder parents and the second the influence of multi-parent crossing schemes (and number of founders) on haplotype creation and diversity. We present and apply two open software resources to simulate alternate strategies for the development of multi-parent populations.

13.
Front Plant Sci ; 7: 1540, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822218

RESUMO

The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat (Triticum aestivum), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder "NIAB elite MAGIC" wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between "half of ear emergence above flag leaf ligule" and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.

14.
Plant Biotechnol J ; 14(6): 1406-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26801965

RESUMO

Multiparent Advanced Generation Intercross (MAGIC) mapping populations offer unique opportunities and challenges for marker and QTL mapping in crop species. We have constructed the first eight-parent MAGIC genetic map for wheat, comprising 18 601 SNP markers. We validated the accuracy of our map against the wheat genome sequence and found an improvement in accuracy compared to published genetic maps. Our map shows a notable increase in precision resulting from the three generations of intercrossing required to create the population. This is most pronounced in the pericentromeric regions of the chromosomes. Sixteen percent of mapped markers exhibited segregation distortion (SD) with many occurring in long (>20 cM) blocks. Some of the longest and most distorted blocks were collinear with noncentromeric high-marker-density regions of the genome, suggesting they were candidates for introgression fragments introduced into the bread wheat gene pool from other grass species. We investigated two of these linkage blocks in detail and found strong evidence that one on chromosome 4AL, showing SD against the founder Robigus, is an interspecific introgression fragment. The completed map is available from http://www.niab.com/pages/id/326/Resources.


Assuntos
Locos de Características Quantitativas , Recombinação Genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Genoma de Planta , Genótipo , Polimorfismo de Nucleotídeo Único
15.
G3 (Bethesda) ; 5(11): 2257-66, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416667

RESUMO

The necrotrophic fungus Parastagonospora nodorum is an important pathogen of one of the world's most economically important cereal crops, wheat (Triticum aestivum L.). P. nodorum produces necrotrophic protein effectors that mediate host cell death, providing nutrients for continuation of the infection process. The recent discovery of pathogen effectors has revolutionized disease resistance breeding for necrotrophic diseases in crop species, allowing often complex genetic resistance mechanisms to be broken down into constituent parts. To date, three effectors have been identified in P. nodorum. Here we use the effector, SnTox1, to screen 642 progeny from an eight-parent multiparent advanced generation inter-cross (i.e., MAGIC) population, genotyped with a 90,000-feature single-nucleotide polymorphism array. The MAGIC founders showed a range of sensitivity to SnTox1, with transgressive segregation evident in the progeny. SnTox1 sensitivity showed high heritability, with quantitative trait locus analyses fine-mapping the Snn1 locus to the short arm of chromosome 1B. In addition, a previously undescribed SnTox1 sensitivity locus was identified on the long arm of chromosome 5A, termed here QSnn.niab-5A.1. The peak single-nucleotide polymorphism for the Snn1 locus was converted to the KASP genotyping platform, providing breeders and researchers a simple and cheap diagnostic marker for allelic state at Snn1.


Assuntos
Resistência à Doença/genética , Loci Gênicos , Hibridização Genética , Triticum/genética , Ascomicetos/patogenicidade , Cromossomos de Plantas/genética , Ligação Genética , Micotoxinas/toxicidade , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
16.
Nature ; 430(6996): 201-5, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15241413

RESUMO

Eastern North America is one of at least six regions of the world where agriculture is thought to have arisen wholly independently. The primary evidence for this hypothesis derives from morphological changes in the archaeobotanical record of three important crops--squash, goosefoot and sunflower--as well as an extinct minor cultigen, sumpweed. However, the geographical origins of two of the three primary domesticates--squash and goosefoot--are now debated, and until recently sunflower (Helianthus annuus L.) has been considered the only undisputed eastern North American domesticate. The discovery of 4,000-year-old domesticated sunflower remains from San Andrés, Tabasco, implies an earlier and possibly independent origin of domestication in Mexico and has stimulated a re-examination of the geographical origin of domesticated sunflower. Here we describe the genetic relationships and pattern of genetic drift between extant domesticated strains and wild populations collected from throughout the USA and Mexico. We show that extant domesticates arose in eastern North America, with a substantial genetic bottleneck occurring during domestication.


Assuntos
Agricultura/história , Deriva Genética , Helianthus/genética , Evolução Molecular , Variação Genética/genética , Genética Populacional , Helianthus/classificação , História Antiga , México , Filogenia , Fatores de Tempo , Estados Unidos
17.
Am J Bot ; 89(9): 1550-2, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21665757

RESUMO

The transfer of genes from crop plants to their wild relatives via hybridization has emerged as one of the primary risks associated with the commercialization of genetically engineered crops. Although previous studies have revealed relatively high levels of hybridization when crop plants come into contact with their wild relatives, the frequency of such contact across the range of cultivation of any crop taxon is unknown. Here we report the results of a multi-year, range-wide survey of the potential for reproductive contact between cultivated and common sunflower (Helianthus annuus). The results of this work indicate that the opportunity for crop-wild hybridization exists throughout the range of sunflower cultivation. Approximately two-thirds of all cultivated fields occurred in close proximity to, and flowered coincidentally with, common sunflower populations. In these populations, the phenological overlap was extensive, with 52-96% of all wilds flowering coincidentally with the adjacent cultivar field. Moreover, there was morphological evidence of hybridization in 10-33% of the populations surveyed within a given year. These findings indicate that crop-wild hybridization is likely across the range of sunflower cultivation in the USA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...